USN

Sixth Semester B.E. Degree Examination, Dec.2015/Jan.2016 **Digital Communication**

Time: 3 hrs. Note: Answer FIVE full questions, selecting at least TWO questions from each part.

Max. Marks: 100

With neat sketches explain flat top sampling.

What is Aperture effect? Explain how it can be compensated.

- (05 Marks)
- A signal $g(t) = 10\cos(20\pi t)\cos(200\pi t)$ is sampled at the rate of 250 samples/sec.
 - i) Sketch spectrum of sampled signal.
 - ii) Specify the cutoff of ideal reconstruction filter so as to recover g(t) from $g_{\delta}(t)$.

(08 Marks)

- Explain the block diagram of regenerative repeater.

 A PCM system uses a uniform quantizer followed by a v bit encoder. Show that rms signal to quantization noise ratio is approximately given by (1.8+6v) db. (06 Marks)
- With neat sketch explain companding in POX. Also explain μ-law and A-law companding. (09 Marks)
- Explain the following with neat ske 3

Granular noise.

Slope overload distortion.

(05 Marks)

- b. A delta modulator is designed to operate at five times the Nyquist rate for a signal with 3 kHz bandwidth. Determine the maximum amplitude of a 2 kHz I/P sinusoid for which delta modulator does not have slope overload. Quantizing step size is 250 mV. (05 Marks)
- For the binary bit stream 10011011 draw the waveforms for the following cases:
 - Manchester RZ i) Polar NRZ
- iii) Gray code NRZ

(05 Marks)

With neat sketch explain power spectra of discrete PAM signals.

(05 Marks)

(06 Marks)

- What is 187 Derive an expression for Nyquist pulse shaping criterion for distortionless base band bary transmission. (06 Marks)
 - What is correlative coding? Explain duobinary coding with and without precoding.

The binary data 011100101 are applied to the I/P of a modified duo binary system.

- Construct modified duo binary coder O/P without precoder.
- ii) Suppose that due to error in transmission, the level produced by the third digit is reduced to zero. Construct a new receiver output. (08 Marks)

PART – B

- 5 With neat block diagram, explain the DPSK transmitter and receiver. a. (08 Marks)
 - Obtain the expression for probability of symbol error of coherent binary FSK. b. (07 Marks)
 - Binary data are transmitted over a microwave link at the rate of 10⁶ bps and the PSD of the noise at the receiver input is 10⁻¹⁰ W/Hz. Find the average carrier power required to maintain an average prob. of error $P_e \le 10^{-4}$ for coherent binary FSK. What is the required channel B.W? (Take erfc $(3.71) = 10^{-4}$) (05 Marks)

- Explain the Gram Schmidt orthogonalization procedure to obtain the orthonormal basis function for linearly independent set of signals.
 - b. Three signals $S_1(t)$, $S_2(t)$ and $S_3(t)$ are as shown in Fig. Q6 (b). Apply Gram Schmidt procedure to obtain an orthonormal basis for the signals. Express the signals $S_1(t)$, $S_2(t)$ and S₃(t) in terms of orthonormal basis functions. Also give signal constellation diagram.

Show that the output SNR of a matched filter is proportional to ratio of signal energy to PSD 7 of input noise. (06 Marks)

Explain the function of correlation receiver.

- (06 Ma)
 (08 Ma)

 Sequence).

 Sequence).

 (06 Maring spread spectrum transmitter and receiver w)
 (08 Mark)

 Spread spectrum communication system has following parameters: $\frac{-b}{N_0} = 10$ for average probability of error less than 10^{-5} .

 Calculate processing than and jamming margin. Also find jamming margin in db. (06 Marks)

2 of 2